Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure–temperature ignition diagrams

Identifieur interne : 001258 ( Main/Exploration ); précédent : 001257; suivant : 001259

Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure–temperature ignition diagrams

Auteurs : Kevin J. Hughes [Royaume-Uni] ; John F. Griffiths [Royaume-Uni] ; Michael Fairweather [Royaume-Uni] ; Alison S. Tomlin [Royaume-Uni]

Source :

RBID : ISTEX:26A5076EDCC2A0AF51D428E2F0E087244AC80930

Descripteurs français

English descriptors

Abstract

The purpose of this paper is to show the application of global uncertainty analysis to comprehensive and reduced kinetic models as a tool to identify important thermochemical and reaction rate parameters as determinants of the conditions leading to autoignition. Propane oxidation is taken as the test case. The simulation of experimental investigations of the cool flames and two-stage ignitions, via the pressure–temperature ignition diagram, show that existing kinetic models for the low temperature combustion of propane at sub-atmospheric pressures reflect a greater reactivity than seems to be appropriate. That is, the models lead to a prediction of two-stage ignition at pressures somewhat lower and with ignition delays shorter than is found experimentally. The inconsistency between experiment and numerical simulation seems not to be an inherent problem of the qualitative structure of the models, but may derive from uncertainties in the parameters within the mechanism. By use of “brute force”, Morris-one-at-a-time and Monte-Carlo simulations, we show that uncertainties in only a small number of parameters, and falling well within the errors that may reasonably be assigned, can shift the response appropriately. Moreover, it appears that in the low temperature combustion regime, thermochemistry is at least as, if not more, important than the reaction rates, yet usually receives less attention within sensitivity studies. In the present case, the main factors controlling the temperature reached in the first stage of two-stage ignition and the time to ignition appear to be connected with the thermochemistry of three specific hydroperoxyalkyl radicals and their derivatives. Other factors, such as heat and mass transport are also addressed, and their effects are mitigated to some extent by evaluation of initial and revised models against experimental data for ignition delay obtained under microgravity. The results highlight more general issues that pertain to the numerical simulation of the combustion of higher hydrocarbons and contribute to the development of the protocol necessary for testing kinetic models before they are ready for use in a predictive capacity.

Url:
DOI: 10.1039/b605379c


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure–temperature ignition diagrams</title>
<author wicri:is="90%">
<name sortKey="Hughes, Kevin J" sort="Hughes, Kevin J" uniqKey="Hughes K" first="Kevin J." last="Hughes">Kevin J. Hughes</name>
</author>
<author wicri:is="90%">
<name sortKey="Griffiths, John F" sort="Griffiths, John F" uniqKey="Griffiths J" first="John F." last="Griffiths">John F. Griffiths</name>
</author>
<author wicri:is="90%">
<name sortKey="Fairweather, Michael" sort="Fairweather, Michael" uniqKey="Fairweather M" first="Michael" last="Fairweather">Michael Fairweather</name>
</author>
<author wicri:is="90%">
<name sortKey="Tomlin, Alison S" sort="Tomlin, Alison S" uniqKey="Tomlin A" first="Alison S." last="Tomlin">Alison S. Tomlin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:26A5076EDCC2A0AF51D428E2F0E087244AC80930</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1039/b605379c</idno>
<idno type="url">https://api.istex.fr/document/26A5076EDCC2A0AF51D428E2F0E087244AC80930/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001061</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001061</idno>
<idno type="wicri:Area/Istex/Curation">001061</idno>
<idno type="wicri:Area/Istex/Checkpoint">000283</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000283</idno>
<idno type="wicri:doubleKey">1463-9076:2006:Hughes K:evaluation:of:models</idno>
<idno type="wicri:Area/Main/Merge">001479</idno>
<idno type="wicri:Area/Main/Curation">001258</idno>
<idno type="wicri:Area/Main/Exploration">001258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure–temperature ignition diagrams</title>
<author wicri:is="90%">
<name sortKey="Hughes, Kevin J" sort="Hughes, Kevin J" uniqKey="Hughes K" first="Kevin J." last="Hughes">Kevin J. Hughes</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemistry, University of Leeds, LS2 9JT, Leeds</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Griffiths, John F" sort="Griffiths, John F" uniqKey="Griffiths J" first="John F." last="Griffiths">John F. Griffiths</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemistry, University of Leeds, LS2 9JT, Leeds</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Fairweather, Michael" sort="Fairweather, Michael" uniqKey="Fairweather M" first="Michael" last="Fairweather">Michael Fairweather</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Process, Environmental and Materials Engineering, University of Leeds, LS2 9JT, Leeds</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Tomlin, Alison S" sort="Tomlin, Alison S" uniqKey="Tomlin A" first="Alison S." last="Tomlin">Alison S. Tomlin</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Process, Environmental and Materials Engineering, University of Leeds, LS2 9JT, Leeds</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Physical Chemistry Chemical Physics</title>
<title level="j" type="abbrev">Phys. Chem. Chem. Phys.</title>
<idno type="ISSN">1463-9076</idno>
<idno type="eISSN">1463-9084</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="2006">2006</date>
<biblScope unit="volume">8</biblScope>
<biblScope unit="issue">27</biblScope>
<biblScope unit="page" from="3197">3197</biblScope>
<biblScope unit="page" to="3210">3210</biblScope>
</imprint>
<idno type="ISSN">1463-9076</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1463-9076</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkane combustion</term>
<term>Ames</term>
<term>Base values</term>
<term>Brute force</term>
<term>Brute force analysis result</term>
<term>Carlo</term>
<term>Ch3oo ch3ooh</term>
<term>Chem</term>
<term>Chemical evolution</term>
<term>Chemical mechanism</term>
<term>Chemkin format</term>
<term>Combust</term>
<term>Comprehensive chemical kinetics</term>
<term>Comprehensive scheme</term>
<term>Dhf1</term>
<term>Dimensional model</term>
<term>Energy combust</term>
<term>Equimolar mixtures</term>
<term>Experimental data</term>
<term>Experimental study</term>
<term>Exploratory test</term>
<term>Global</term>
<term>Global methods</term>
<term>Global uncertainty analyses</term>
<term>Global uncertainty analysis</term>
<term>Global uncertainty analysis methods</term>
<term>Greater reactivity</term>
<term>Greatest sensitivities</term>
<term>Hcho</term>
<term>Heat loss</term>
<term>Heat transfer rate</term>
<term>Heat transport</term>
<term>Hydroperoxyalkyl radicals</term>
<term>Ignition</term>
<term>Ignition delay</term>
<term>Ignition delays</term>
<term>Ignition diagram</term>
<term>Ignition diagrams</term>
<term>Important parameters</term>
<term>Important reactions</term>
<term>Important species</term>
<term>Individual species</term>
<term>Input parameter space</term>
<term>Input parameters</term>
<term>Kinetic model</term>
<term>Kinetic models</term>
<term>Kinetic parameters</term>
<term>Kinetic scheme</term>
<term>Kinetics</term>
<term>Large number</term>
<term>Large numbers</term>
<term>Many parameters</term>
<term>Mass transport</term>
<term>Mechanism reduction</term>
<term>Microgravity</term>
<term>Microgravity conditions</term>
<term>Microgravity experiments</term>
<term>Minor change</term>
<term>Model evaluation</term>
<term>Model simulations</term>
<term>Monte carlo</term>
<term>Monte carlo analysis</term>
<term>Monte carlo method</term>
<term>Monte carlo methods</term>
<term>Monte carlo simulations</term>
<term>Monte carlo techniques</term>
<term>More change</term>
<term>Morris analysis</term>
<term>Morris method</term>
<term>Morris simulations</term>
<term>Nasa polynomial functions</term>
<term>Natural convection</term>
<term>Numerical analysis</term>
<term>Numerical models</term>
<term>Numerical simulation</term>
<term>Numerical studies</term>
<term>Other parameters</term>
<term>Outer boundary</term>
<term>Output predictions</term>
<term>Output values</term>
<term>Overall chain</term>
<term>Overall importance</term>
<term>Overall range</term>
<term>Overall uncertainty</term>
<term>Owner societies</term>
<term>Parameter</term>
<term>Parameter values</term>
<term>Perturbation</term>
<term>Perturbed value</term>
<term>Phys</term>
<term>Potential optimisation</term>
<term>Preliminary results</term>
<term>Present application</term>
<term>Present case</term>
<term>Present paper</term>
<term>Present study</term>
<term>Pressure time records</term>
<term>Probability distribution</term>
<term>Proc</term>
<term>Propane</term>
<term>Propane combustion</term>
<term>Propane oxidation</term>
<term>Qualitative structure</term>
<term>Rate parameters</term>
<term>Reactant pressure</term>
<term>Reaction equations</term>
<term>Reaction rate</term>
<term>Reaction rate parameters</term>
<term>Reaction rates</term>
<term>Reactive intermediates</term>
<term>Reversible reactions</term>
<term>Scatter plots</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Sensitivity methods</term>
<term>Sensitivity studies</term>
<term>Simulation</term>
<term>Small number</term>
<term>Small variation</term>
<term>Small variations</term>
<term>Spatial variations</term>
<term>Species concentrations</term>
<term>Species heat</term>
<term>Species wall loss rates</term>
<term>Spherical vessel</term>
<term>Stable outputs</term>
<term>Stage ignition</term>
<term>Stage temperature</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Strong interactions</term>
<term>Such scatter plots</term>
<term>Surface activity</term>
<term>Surface termination</term>
<term>Temperature combustion</term>
<term>Terrestrial conditions</term>
<term>Test case</term>
<term>Thermochemical</term>
<term>Thermochemical data</term>
<term>Thermochemistry</term>
<term>Time step</term>
<term>Total pressure</term>
<term>Uncertainty analysis</term>
<term>Uncertainty ranges</term>
<term>Vessel centre temperature</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alkane combustion</term>
<term>Ames</term>
<term>Base values</term>
<term>Brute force</term>
<term>Brute force analysis result</term>
<term>Carlo</term>
<term>Ch3oo ch3ooh</term>
<term>Chem</term>
<term>Chemical evolution</term>
<term>Chemical mechanism</term>
<term>Chemkin format</term>
<term>Combust</term>
<term>Comprehensive chemical kinetics</term>
<term>Comprehensive scheme</term>
<term>Dhf1</term>
<term>Dimensional model</term>
<term>Energy combust</term>
<term>Equimolar mixtures</term>
<term>Experimental data</term>
<term>Experimental study</term>
<term>Exploratory test</term>
<term>Global</term>
<term>Global methods</term>
<term>Global uncertainty analyses</term>
<term>Global uncertainty analysis</term>
<term>Global uncertainty analysis methods</term>
<term>Greater reactivity</term>
<term>Greatest sensitivities</term>
<term>Hcho</term>
<term>Heat loss</term>
<term>Heat transfer rate</term>
<term>Heat transport</term>
<term>Hydroperoxyalkyl radicals</term>
<term>Ignition</term>
<term>Ignition delay</term>
<term>Ignition delays</term>
<term>Ignition diagram</term>
<term>Ignition diagrams</term>
<term>Important parameters</term>
<term>Important reactions</term>
<term>Important species</term>
<term>Individual species</term>
<term>Input parameter space</term>
<term>Input parameters</term>
<term>Kinetic model</term>
<term>Kinetic models</term>
<term>Kinetic parameters</term>
<term>Kinetic scheme</term>
<term>Kinetics</term>
<term>Large number</term>
<term>Large numbers</term>
<term>Many parameters</term>
<term>Mass transport</term>
<term>Mechanism reduction</term>
<term>Microgravity</term>
<term>Microgravity conditions</term>
<term>Microgravity experiments</term>
<term>Minor change</term>
<term>Model evaluation</term>
<term>Model simulations</term>
<term>Monte carlo</term>
<term>Monte carlo analysis</term>
<term>Monte carlo method</term>
<term>Monte carlo methods</term>
<term>Monte carlo simulations</term>
<term>Monte carlo techniques</term>
<term>More change</term>
<term>Morris analysis</term>
<term>Morris method</term>
<term>Morris simulations</term>
<term>Nasa polynomial functions</term>
<term>Natural convection</term>
<term>Numerical analysis</term>
<term>Numerical models</term>
<term>Numerical simulation</term>
<term>Numerical studies</term>
<term>Other parameters</term>
<term>Outer boundary</term>
<term>Output predictions</term>
<term>Output values</term>
<term>Overall chain</term>
<term>Overall importance</term>
<term>Overall range</term>
<term>Overall uncertainty</term>
<term>Owner societies</term>
<term>Parameter</term>
<term>Parameter values</term>
<term>Perturbation</term>
<term>Perturbed value</term>
<term>Phys</term>
<term>Potential optimisation</term>
<term>Preliminary results</term>
<term>Present application</term>
<term>Present case</term>
<term>Present paper</term>
<term>Present study</term>
<term>Pressure time records</term>
<term>Probability distribution</term>
<term>Proc</term>
<term>Propane</term>
<term>Propane combustion</term>
<term>Propane oxidation</term>
<term>Qualitative structure</term>
<term>Rate parameters</term>
<term>Reactant pressure</term>
<term>Reaction equations</term>
<term>Reaction rate</term>
<term>Reaction rate parameters</term>
<term>Reaction rates</term>
<term>Reactive intermediates</term>
<term>Reversible reactions</term>
<term>Scatter plots</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Sensitivity methods</term>
<term>Sensitivity studies</term>
<term>Simulation</term>
<term>Small number</term>
<term>Small variation</term>
<term>Small variations</term>
<term>Spatial variations</term>
<term>Species concentrations</term>
<term>Species heat</term>
<term>Species wall loss rates</term>
<term>Spherical vessel</term>
<term>Stable outputs</term>
<term>Stage ignition</term>
<term>Stage temperature</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Strong interactions</term>
<term>Such scatter plots</term>
<term>Surface activity</term>
<term>Surface termination</term>
<term>Temperature combustion</term>
<term>Terrestrial conditions</term>
<term>Test case</term>
<term>Thermochemical</term>
<term>Thermochemical data</term>
<term>Thermochemistry</term>
<term>Time step</term>
<term>Total pressure</term>
<term>Uncertainty analysis</term>
<term>Uncertainty ranges</term>
<term>Vessel centre temperature</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The purpose of this paper is to show the application of global uncertainty analysis to comprehensive and reduced kinetic models as a tool to identify important thermochemical and reaction rate parameters as determinants of the conditions leading to autoignition. Propane oxidation is taken as the test case. The simulation of experimental investigations of the cool flames and two-stage ignitions, via the pressure–temperature ignition diagram, show that existing kinetic models for the low temperature combustion of propane at sub-atmospheric pressures reflect a greater reactivity than seems to be appropriate. That is, the models lead to a prediction of two-stage ignition at pressures somewhat lower and with ignition delays shorter than is found experimentally. The inconsistency between experiment and numerical simulation seems not to be an inherent problem of the qualitative structure of the models, but may derive from uncertainties in the parameters within the mechanism. By use of “brute force”, Morris-one-at-a-time and Monte-Carlo simulations, we show that uncertainties in only a small number of parameters, and falling well within the errors that may reasonably be assigned, can shift the response appropriately. Moreover, it appears that in the low temperature combustion regime, thermochemistry is at least as, if not more, important than the reaction rates, yet usually receives less attention within sensitivity studies. In the present case, the main factors controlling the temperature reached in the first stage of two-stage ignition and the time to ignition appear to be connected with the thermochemistry of three specific hydroperoxyalkyl radicals and their derivatives. Other factors, such as heat and mass transport are also addressed, and their effects are mitigated to some extent by evaluation of initial and revised models against experimental data for ignition delay obtained under microgravity. The results highlight more general issues that pertain to the numerical simulation of the combustion of higher hydrocarbons and contribute to the development of the protocol necessary for testing kinetic models before they are ready for use in a predictive capacity.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Yorkshire-et-Humber</li>
</region>
<settlement>
<li>Leeds</li>
</settlement>
<orgName>
<li>Université de Leeds</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Hughes, Kevin J" sort="Hughes, Kevin J" uniqKey="Hughes K" first="Kevin J." last="Hughes">Kevin J. Hughes</name>
</region>
<name sortKey="Fairweather, Michael" sort="Fairweather, Michael" uniqKey="Fairweather M" first="Michael" last="Fairweather">Michael Fairweather</name>
<name sortKey="Griffiths, John F" sort="Griffiths, John F" uniqKey="Griffiths J" first="John F." last="Griffiths">John F. Griffiths</name>
<name sortKey="Griffiths, John F" sort="Griffiths, John F" uniqKey="Griffiths J" first="John F." last="Griffiths">John F. Griffiths</name>
<name sortKey="Hughes, Kevin J" sort="Hughes, Kevin J" uniqKey="Hughes K" first="Kevin J." last="Hughes">Kevin J. Hughes</name>
<name sortKey="Tomlin, Alison S" sort="Tomlin, Alison S" uniqKey="Tomlin A" first="Alison S." last="Tomlin">Alison S. Tomlin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:26A5076EDCC2A0AF51D428E2F0E087244AC80930
   |texte=   Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure–temperature ignition diagrams
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024